Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 69(3): 314-324, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28134992

RESUMO

OBJECTIVES: To evaluate the in-vitro and in-vivo effects on monoaminergic neurotransmission of ASS234, a promising multitarget-directed ligand (MTDL), for Alzheimer's disease (AD) therapy. METHODS: In vitro was explored the effect of ASS234 on the monoaminergic metabolism in SH-SY5Y and PC12 cell lines, and remaining activity of both monoamine oxidase (MAO) isoforms was assessed. The corresponding dopamine (DA), homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) and noradrenaline (NA) levels were determined by HPLC-ED. In-vivo experiments were carried out Wistar rats and intracerebral guide cannulas were implanted in the hippocampus and in the prefrontal cortex by sterotaxic coordinates. The day after microdialysis samples were collected and levels of 5-HT, DA and NA were determined by (UHPLC) with electrochemical detector. KEY FINDINGS: ASS234 induced a significant increase in serotonin (5-HT) levels in SH-SY5Y cells. In PC12 cells, ASS234 increased significantly the ratio of dopamine (DA)/(HVA + DOPAC), although no apparent differences in (NA) were observed. By in-vivo microdialysis, ASS234 showed a significant increase in the extracellular levels of 5-HT and NA in hippocampus whereas in the prefrontal cortex, DA and NA also increased significantly. CONCLUSIONS: This study reveals the ability of ASS234 a MTDL compound, to enhance the monoaminergic neurotransmission supporting its potential use in AD therapy.


Assuntos
Monoaminas Biogênicas/metabolismo , Dopamina/metabolismo , Indóis/farmacologia , Monoaminoxidase/metabolismo , Piperidinas/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular Tumoral , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Homovanílico/metabolismo , Ligantes , Masculino , Norepinefrina/metabolismo , Células PC12 , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Serotonina/metabolismo
2.
Prog Neurobiol ; 151: 4-34, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26797191

RESUMO

Alzheimer's disease is a multifactorial and fatal neurodegenerative disorder characterized by decline of cholinergic function, deregulation of other neurotransmitter systems, ß-amyloid fibril deposition, and ß-amyloid oligomers formation. Based on the involvement of a relevant number of biological systems in Alzheimer's disease progression, multitarget compounds may enable therapeutic efficacy. Accordingly, compounds possessing, besides anticholinergic activity and ß-amyloid aggregation inhibition properties, metal chelating and/or nitric oxide releasing properties with additional antioxidant capacity were developed. Other targets relevant to Alzheimer's disease have also been considered in the last years for producing multitarget compounds such as ß-secretase, monoamino oxidases, serotonin receptors and sigma 1 receptors. The purpose of this review will be to highlight recent reports on the development of multitarget compounds for Alzheimer's disease published within the last years focusing on multifunctional ligands characterized by tacrine-like and donepezil-like structures.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Indanos/uso terapêutico , Piperidinas/uso terapêutico , Tacrina/uso terapêutico , Animais , Donepezila , Humanos , Indanos/química , Ligantes , Piperidinas/química , Tacrina/química
3.
Bioorg Med Chem ; 24(20): 4835-4854, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27396685

RESUMO

Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N1- and C5-substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure-activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms. Several lead compounds, in terms of potency (submicromolar to low micromolar range), MAO-B selective recognition, and brain permeability, were identified. One of these leads (MAO-B IC50 of 3.54µM, selectivity MAO-A/MAO-B index of 27.7) was further subjected to reversibility and time-dependence inhibition studies, which disclosed a slow and irreversible inhibition of human MAO-B. Overall, the results support the suitability of the 4-triazolylalkyl propargylamine scaffold for exploring the design of multipotent anti-Alzheimer compounds endowed with irreversible MAO-B inhibitory activity.


Assuntos
Desenho de Fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Pargilina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Pargilina/análogos & derivados , Pargilina/síntese química , Pargilina/química , Relação Estrutura-Atividade
4.
Front Neurosci ; 10: 294, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445665

RESUMO

HIGHLIGHTS: ASS2324 is a hybrid compound resulting from the juxtaposition of donepezil and the propargylamine PF9601N ASS2324 is a multi-target directed propargylamine able to bind to all the AChE/BuChE and MAO A/B enzymesASS2324 shows antioxidant, neuroprotective and suitable permeability propertiesASS2324 restores the scopolamine-induced cognitive impairment to the same extent as donepezil, and is less toxicASS2324 prevents ß-amyloid induced aggregation in the cortex of double transgenic miceASS2324 is the most advanced anti-Alzheimer agent for pre-clinical studies that we have identified in our laboratories The complex nature of Alzheimer's disease (AD) has prompted the design of Multi-Target-Directed Ligands (MTDL) able to bind to diverse biochemical targets involved in the progress and development of the disease. In this context, we have designed a number of MTD propargylamines (MTDP) showing antioxidant, anti-beta-amyloid, anti-inflammatory, as well as cholinesterase and monoamine oxidase (MAO) inhibition capacities. Here, we describe these properties in the MTDL ASS234, our lead-compound ready to enter in pre-clinical studies for AD, as a new multipotent, permeable cholinesterase/monoamine oxidase inhibitor, able to inhibit Aß-aggregation, and possessing antioxidant and neuroprotective properties.

5.
Front Neurosci ; 10: 205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252617

RESUMO

HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, ß-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.

6.
Eur J Med Chem ; 121: 864-879, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-26471320

RESUMO

Currently available drugs against Alzheimer's disease (AD) are only able to ameliorate the disease symptoms resulting in a moderate improvement in memory and cognitive function without any efficacy in preventing and inhibiting the progression of the pathology. In an effort to obtain disease-modifying anti-Alzheimer's drugs (DMAADs) following the multifactorial nature of AD, we have recently developed multifunctional compounds. We herein describe the design, synthesis, molecular modeling and biological evaluation of a new series of donepezil-related compounds possessing metal chelating properties, and being capable of targeting different enzymatic systems related to AD (cholinesterases, ChEs, and monoamine oxidase A, MAO-A). Among this set of analogues compound 5f showed excellent ChEs inhibition potency and a selective MAO-A inhibition (vs MAO-B) coupled to strong complexing properties for zinc and copper ions, both known to be involved in the progression of AD. Moreover, 5f exhibited moderate antioxidant properties as found by in vitro assessment. This compound represents a novel donepezil-hydroxyquinoline hybrid with DMAAD profile paving the way to the development of a novel class of drugs potentially able to treat AD.


Assuntos
Acetilcolinesterase/metabolismo , Desenho de Fármacos , Indanos/síntese química , Indanos/farmacologia , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Piperidinas/síntese química , Piperidinas/farmacologia , Acetilcolinesterase/química , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Técnicas de Química Sintética , Donepezila , Humanos , Indanos/química , Indanos/metabolismo , Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Piperidinas/química , Piperidinas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
7.
Food Funct ; 6(4): 1251-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25756794

RESUMO

The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease.


Assuntos
Envelhecimento/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Ácidos Graxos Insaturados/administração & dosagem , Hipocampo/efeitos dos fármacos , Polifenóis/administração & dosagem , Teobromina/administração & dosagem , Acetilcolinesterase/metabolismo , Doença de Alzheimer/prevenção & controle , Animais , Cacau/química , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cognição/efeitos dos fármacos , Dieta , Dopamina/metabolismo , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Norepinefrina/metabolismo , Células PC12 , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
Drug Des Devel Ther ; 8: 1893-910, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25378907

RESUMO

The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer's disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13-15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hAChE and selective irreversible hMAO B inhibitor which might be considered as a promising compound for further development for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Desenho de Fármacos , Indanos/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Piperidinas/uso terapêutico , Piridinas/uso terapêutico , Relação Quantitativa Estrutura-Atividade , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Colinesterases/metabolismo , Donepezila , Humanos , Indanos/química , Indanos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piridinas/química , Piridinas/metabolismo , Proteínas Recombinantes/metabolismo
9.
Eur J Med Chem ; 80: 543-61, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24813882

RESUMO

The synthesis, biochemical evaluation, ADMET, toxicity and molecular modeling of novel multi-target-directed Donepezil + Propargylamine + 8-Hydroxyquinoline (DPH) hybrids 1-7 for the potential prevention and treatment of Alzheimer's disease is described. The most interesting derivative was racemic α-aminotrile4-(1-benzylpiperidin-4-yl)-2-(((8-hydroxyquinolin-5-yl)methyl)(prop-2-yn-1-yl)amino) butanenitrile (DPH6) [MAO A (IC50 = 6.2 ± 0.7 µM; MAO B (IC50 = 10.2 ± 0.9 µM); AChE (IC50 = 1.8 ± 0.1 µM); BuChE (IC50 = 1.6 ± 0.25 µM)], an irreversible MAO A/B inhibitor and mixed-type AChE inhibitor with metal-chelating properties. According to docking studies, both DPH6 enantiomers interact simultaneously with the catalytic and peripheral site of EeAChE through a linker of appropriate length, supporting the observed mixed-type AChE inhibition. Both enantiomers exhibited a relatively similar position of both hydroxyquinoline and benzyl moieties with the rest of the molecule easily accommodated in the relatively large cavity of MAO A. For MAO B, the quinoline system was hosted at the cavity entrance whereas for MAO A this system occupied the substrate cavity. In this disposition the quinoline moiety interacted directly with the FAD aromatic ring. Very similar binding affinity values were also observed for both enantiomers with ChE and MAO enzymes. DPH derivatives exhibited moderate to good ADMET properties and brain penetration capacity for CNS activity. DPH6 was less toxic than donepezil at high concentrations; while at low concentrations both displayed a similar cell viability profile. Finally, in a passive avoidance task, the antiamnesic effect of DPH6 was tested on mice with experimentally induced amnesia. DPH6 was capable to significantly decrease scopolamine-induced learning deficits in healthy adult mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Quelantes/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico , Quelantes/toxicidade , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/toxicidade , Donepezila , Células Hep G2 , Humanos , Hidroxiquinolinas/química , Indanos/química , Masculino , Memória/efeitos dos fármacos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/uso terapêutico , Inibidores da Monoaminoxidase/toxicidade , Pargilina/análogos & derivados , Pargilina/química , Piperidinas/química , Propilaminas/química , Ratos
10.
Biochim Biophys Acta ; 1844(6): 1104-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642166

RESUMO

Monoamine oxidases (MAO) and cholinesterases are validated targets in the design of drugs for the treatment of Alzheimer's disease. The multi-target compound N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)-N-methylprop-2-yn-1-amine (ASS234), bearing the MAO-inhibiting propargyl group attached to a donepezil moiety that inhibits cholinesterases, retained activity against human acetyl- and butyryl-cholinesterases. The inhibition of MAO A and MAO B by ASS234 was characterized and compared to other known MAO inhibitors. ASS234 was almost as effective as clorgyline (kinact/KI=3×10(6) min(-1)M(-1)) and was shown by structural studies to form the same N5 covalent adduct with the FAD cofactor.


Assuntos
Indóis/química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/química , Fármacos Neuroprotetores/química , Piperidinas/química , Acetilcolinesterase/química , Butirilcolinesterase/química , Clorgilina/química , Donepezila , Flavina-Adenina Dinucleotídeo/química , Humanos , Indanos/química , Cinética , Modelos Moleculares , Monoaminoxidase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Eur J Med Chem ; 75: 82-95, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24530494

RESUMO

The design, synthesis, and pharmacological evaluation of donepezil-indolyl based amines 7-10, amides 12-16, and carboxylic acid derivatives 5 and 11, as multipotent ASS234 analogs, able to inhibit simultaneously cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of Alzheimer's disease (AD), is reported. Theoretical studies using 3D-Quantitative Structure-Activity Relationship (3D-QSAR) was used to define 3D-pharmacophores for inhibition of MAO A/B, AChE, and BuChE enzymes. We found that, in general, and for the same substituent, amines are more potent ChE inhibitors (see compounds 12, 13 versus 7 and 8) or equipotent (see compounds 14, 15 versus 9 and 10) than the corresponding amides, showing a clear EeAChE inhibition selectivity. For the MAO inhibition, amides were not active, and among the amines, compound 14 was totally MAO A selective, while amines 15 and 16 were quite MAO A selective. Carboxylic acid derivatives 5 and 11 showed a multipotent moderate selective profile as EeACE and MAO A inhibitors. Propargylamine 15 [N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)prop-2-yn-1-amine] resulted in the most potent hMAO A (IC50 = 5.5 ± 1.4 nM) and moderately potent hMAO B (IC50 = 150 ± 31 nM), EeAChE (IC50 = 190 ± 10 nM), and eqBuChE (IC50 = 830 ± 160 nM) inhibitor. However, the analogous N-allyl and the N-morpholine derivatives 16 and 14 deserve also attention as they show an attractive multipotent profile. To sum up, donepezil-indolyl hybrid 15 is a promising drug for further development for the potential prevention and treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Inibidores da Colinesterase/química , Indanos/química , Indóis/química , Inibidores da Monoaminoxidase/química , Piperidinas/química , Animais , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Colinesterases/metabolismo , Donepezila , Desenho de Fármacos , Electrophorus , Cavalos , Humanos , Indanos/farmacologia , Indóis/farmacologia , Modelos Moleculares , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Piperidinas/farmacologia , Relação Quantitativa Estrutura-Atividade
12.
J Neural Transm (Vienna) ; 120(6): 911-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23263540

RESUMO

Herein, we report the biological evaluation of a series of indole substituted hydrazides and hydrazines throughout the assessment of their multipotent inhibitory potency towards monoamine oxidase (MAO) A and B, semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1), and the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Hydrazine JL72 (3-(3-hydrazinylpropyl)-1H-indole) showed a potent, reversible and non-time-dependent inhibition of MAO-A, which suggests its capacity in restoring serotoninergic neurotransmission being devoid of the side effects observed for classic MAO-A inhibitors. In addition, JL72 behaved as a moderate BuChE inhibitor. Finally, both hydrazines and hydrazides derivatives showed high affinity towards SSAO/VAP-1. Among them, JL72 behaved as a noncompetitive and the most potent inhibitor (IC50 = 0.19 ± 0.04 µM), possessing also a significant anti-inflammatory activity. The combined inhibition of SSAO/VAP-1, MAO (A and B), AChE and BuChE appear as an important therapeutic target to be considered in the treatment of cerebrovascular and neurological disorders such as Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Butirilcolinesterase/metabolismo , Moléculas de Adesão Celular/metabolismo , Transtornos Cerebrovasculares/terapia , Indóis/química , Monoaminoxidase/metabolismo , Animais , Butirilcolinesterase/efeitos dos fármacos , Linhagem Celular Transformada , Transtornos Cerebrovasculares/enzimologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Hidrazinas/química , Hidrazinas/metabolismo , Cinética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Monoaminoxidase/efeitos dos fármacos , Ratos , Fatores de Tempo , Transfecção
13.
Eur J Med Chem ; 46(9): 4665-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21669479

RESUMO

The synthesis, biological evaluation and molecular modeling of new multipotent inhibitors of type I and type II, able to simultaneously inhibit monoamine oxidases (MAO) as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), is described. Compounds of type I were prepared by sequential reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (14) [or 2,6-dichloropyridine-3,5-dicarbonitrile (15)] with prop-2-yn-1-amine (or N-methylprop-2-yn-1-amine) and 2-(1-benzyl-piperidin-4-yl)alkylamines 22-25. Compounds of type II were prepared by Friedländer type reaction of 6-amino-5-formyl-2-(methyl(prop-2-yn-1-yl)amino)nicotinonitriles 32 and 33 with 4-(1-benzylpiperidin-4-yl)butan-2-one (31). The biological evaluation of molecules 1-11 showed that most of these compounds are potent, in the nanomolar range, and selective AChEI, with moderate and equipotent selectivity for MAO-A and MAO-B inhibition. Kinetic studies of compound 8 proved that this is a EeAChE mixed type inhibitor (IC(50) = 16 ± 2; Ki = 12 ± 3 nM). Molecular modeling investigation on compound 8 confirmed its dual AChE inhibitory profile, binding simultaneously at the catalytic active site (CAS) and at the peripheric anionic site (PAS). In overall, compound 11, as a potent and selective dual AChEI, showing a moderate and selective MAO-A inhibitory profile, can be considered as an attractive multipotent drug for further development on two key pharmacological targets playing key roles in the therapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Modelos Moleculares , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/uso terapêutico , Inibidores da Colinesterase/farmacocinética , Humanos , Inibidores da Monoaminoxidase/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...